
Distributed Algorithms

Partha Sarathi Mandal

Department of Mathematics

IIT Guwahati

• Thanks to Dr. Sukumar Ghosh for the slides

Distributed Algorithms

• Distributed algorithms for various graph

theoretic problems have numerous

applications in distributed computing system.

• What is a distributed computing system ?

– The topology of a distributed system is

represented by a graph where the nodes

represent processes, and the links represent

communication channels.

Topology of a DS is represented by a graph

1

2

3

4

5

7

8

2

A network of processes. The nodes are processes,
and the edges are communication channels.

3

6

7

9

10

Examples
Server

Client-server model

Server is the coordinator

Peer-to-peer model

No unique coordinator

Clients

Parallel vs Distributed

• In both parallel and distributed systems, the events are

partially ordered.

• The distinction between parallel and distributed is not

always very clear. always very clear.

• In parallel systems, the primarily issues are

• speed-up and increased data handling capability.

• In distributed systems the primary issues are

• fault-tolerance, synchronization, scalability, etc.

Parallel Distributed

Grid P2P

Parallel vs Distributed
(Multiple processors)

• Tightly coupled systems

– Parallel processing

systems.

CPU CPUCPUCPU

Shared

Memory

Interconnected Hardware

systems.

• Loosely coupled systems

– Distributed computing

systems.

Local

memory

CPU

Communication Network

Local

memory

CPU

Local

memory

CPU

Local

memory

CPU

Examples

Large networks are very commonplace these

days. Think of the world wide web.

Other examples are:

- Social Networks

- Sensor networks

4

- Sensor networks

- BitTorrent for downloading video / audio

- Skype for making free audio and video

communication

- Computational grids

- Network of mobile robots

Why distributed systems

• Geographic distribution of processes

• Resource sharing (example: P2P networks, grids)

• Computation speed up ()• Computation speed up (as in a grid)

• Fault tolerance

• etc.

9

Important services

• Internet banking

• Web search

• Net meeting

• Distance education

• Internet auction

• Google earth

• Skype

• Distance education

• Video distribution

• Publish subscribe

10

Important issues

• Knowledge is local

• Clocks are not synchronized

• No shared address space

• Topology and routing : everything is dynamic• Topology and routing : everything is dynamic

• Scalability: all solutions do not scale well

• Processes and links fail: Fault tolerance

11

Some common subproblems

• Leader election

• Mutual exclusion

• Time synchronization

• Global state collection

• Replica management

• Consensus

• Coloring

• Self-stabilization

12

Models

• We will motive about distributed systems using

models. There are many dimensions of variability

in distributed systems.

• Examples:• Examples:

– types of processors

– inter-process communication mechanisms

– timing assumptions

– failure classes

– security features, etc

Models

• Models are simple abstractions
that help to overcome the
variability -- abstractions that
preserve the essential features, but
hide the implementation details
and simplify writing distributed

algorithms

and simplify writing distributed
algorithms for problem solving.

• Optical or radio communication ?

• PC or Mac ?

• Are clocks perfectly synchronized ?

models

Real hardware

Implementation

of models

Understanding Models

• How models help algorithms

models

Real hardware

Implementation

of models

Modeling Communication

• System topology is a graph
G = (V, E), where V = set of
nodes (sequential processes)
E = set of edges (links or
channels, bi/unidirectional).channels, bi/unidirectional).

Four types of actions by a
process:

– internal action

– input action

– communication action

– output action

Example: A Message Passing Model

A Reliable FIFO Channel

• Axiom 1. Message m sent ⇔
message m received

• Axiom 2. Message propagation

P

• Axiom 2. Message propagation
delay is arbitrary but finite.

• Axiom 3. m1 sent before m2 ⇔

m1 received before m2.

P

Q

Q

time

Send(m1) Send(m2)

receive(m1) receive(m2)

Example: Shared memory model

• Address spaces of processes overlap

M1 M2

• Concurrent operations on a shared variable are serialized

1 3
2

4
Processes

Variations of shared memory models

• State reading model

– Each process can read the

states of its neighbors

0

3

21

• Link register model

– Each process can read from and

write to adjacent registers. The

entire local state is not shared.

0

3

21

Modeling wireless networks

0

1

2

3

4

5

6

(a)

• Communication via broadcast

• Limited range

• Dynamic topology

• Collision of broadcasts

(handled by CSMA/CA)

0

1

2

3

4

5

6

(a)

(b)

(handled by CSMA/CA)

RTS RTS

CTS

Request To Send

Request To SendClear To Send

Synchrony vs. Asynchrony

Send & receive can be
blocking or non-blocking

Postal communication is
asynchronous

Synchronous

clocks

Physical clocks are

synchronized

Synchronous

processes

Lock-step synchrony

Synchronous Bounded delay

Telephone communication
is synchronous

Synchronous
communication or not?

(1) Remote Procedure Call,

(2) Email

Synchronous

channels

Bounded delay

Synchronous

message-order

First-in first-out

channels

Synchronous

communication

Communication via

handshaking

Weak vs. Strong Models

• One object (or operation) of a strong
model = More than one simpler
objects (or simpler operations) of a
weaker model.

Examples

High level language is stronger
than assembly language.

• Often, weaker models are
synonymous with fewer restrictions.

• One can add layers (additional

restrictions) to create a stronger

model from weaker one.

Asynchronous is weaker than
synchronous (communication).

Bounded delay is stronger than
unbounded delay (channel)

Model transformation

Stronger models

- simplify reasoning, but

- needs extra work to

implement

“Can model X be implemented

using model Y?”””” is an interesting

question in computer science.

Weaker models

- are easier to implement.

- Have a closer relationship

with the real world

Sample exercises

1. Non-FIFO to FIFO channel

2. Message passing to shared memory

3. Non-atomic broadcast to atomic

broadcast

Non-FIFO to FIFO channel

P Q

m1m4m3m2

FIFO = First-In-First-Out

Sends out

m1, m2, m3, m4, …

Non-FIFO to FIFO channel

P Q

m1m4m3m2

FIFO = First-In-First-Out

buffer

1234567Sends out

m1, m2, m3, m4, …

Non-FIFO to FIFO channel
{Sender process P} {Receiver process Q}

var i : integer {initially 0} var k : integer {initially 0}

buffer: buffer[0..∞] of msg

{initially ∀k: buffer [k] = empty

repeat repeat {STORE}

send m[i],i to Q; receive m[i],i from P;

i := i+1 store m[i] into buffer[i];i := i+1 store m[i] into buffer[i];

forever {DELIVER}

while buffer[k] ≠ empty do
begin

deliver content of buffer [k];

buffer [k] := empty; k := k+1;

end

foreverNeeds unbounded buffer &

unbounded sequence no

THIS IS BAD

Observations

• Now solve the same problem on a model where
a) The propagation delay has a known upper bound of T.

b) The messages are sent out @ r per unit time.

c) The messages are received at a rate faster than r.

The buffer requirement drops to r.T.

(Lesson) Stronger model helps.

Question. Can we solve the problem using bounded buffer space

if the propagation delay is arbitrarily large?

Example

1 second window

First message

sender

Last message

receiver

Implementing Shared memory using

Message passing
{Read X by process i}: read x[i]

{Write X:= v by process i}

- x[i] := v;

- Atomically broadcast v to

every other process j (j ≠ i);

X

memory

x[0]

x[1]

x[2]

- After receiving broadcast,

process j (j ≠ i) sets x[j] to v.

Understand the significance of atomic

operations. It is not trivial, but is very

important in distributed systems.

Atomic = all or nothing

0 1 2 3

processes

x[3]

(a) (b)

Implementation Atomically

broadcast is far from trivial

Non-atomic to atomic broadcast

Atomic broadcast = either everybody or nobody receives

{process i is the sender}

for j = 1 to N-1 (j ≠ i) send message m to neighbor [j]
(Easy!)(Easy!)

Now include crash failure as a part of our model.

What if the sender crashes at the middle ?

How to implement atomic broadcast in presence of crash?

Complexity Measures

Common measures

Space complexity

How much space is needed per process to run an algorithm? (measured
in terms of N, the size of the network)

Time complexity

What is the max. time (number of steps) needed to complete the What is the max. time (number of steps) needed to complete the
execution of the algorithm?

Message complexity

How many message are needed to complete the execution of the
algorithm?

An example

Consider broadcasting in an n-cube (here n=3)

N = total number of processes = 2n = 8

Each process j > 0 has a

source

variable x[j], whose

initial value is arbitrary

Broadcasting using messages

{Process 0} m.value := x[0];

send m to all neighbors

{Process i > 0}

repeat

receive m {m contains the value};

if m is received for the first timeif m is received for the first time

then x[i] := m.value;

send x[i] to each neighbor j > i

else discard m

end if

Forever

What is the

(1) Message & time complexities

(2) space complexity per process?

m

m

m

1/2 (N log2N) & log2N

log2N

Broadcasting using shared memory

{Process 0} x[0] := v

{Process i > 0}

repeat

if ∃ a neighbor j < i : x[i] ≠ x[j]

then x[i] := x[j] (PULL DATA)then x[i] := x[j] (PULL DATA)

{this is a step}

else skip

end if

forever

What is the time complexity?

(i.e. how many steps are needed?)
Arbitrarily large!

Broadcasting using shared memory

Now, use “large atomicity”, where

in one step, a process j reads the states

of ALL neighbors with smaller id, and

updates x[j] only when these are equal,

but different from x[j].but different from x[j].

What is the time complexity ?

How many steps are needed ?

Rounds are truly defined for synchronous

systems. An asynchronous round consists

of a number of steps where every process

(including the slowest one) takes at least

Time complexity in rounds

one step.

How many rounds will you need to complete

the broadcast using the large atomicity

model ?

An easier concept is that of synchronous processes

executing their steps in lock-step synchrony

Graph Algorithms vs

Distributed Algorithms

Graph Algorithms

• Why graph algorithms?

• Many problems in DS can be modeled as graph problems.

Note that

– The topology of a distributed system is a graph

– Routing table computation uses the shortest path algorithm

– Efficient broadcasting uses a spanning tree– Efficient broadcasting uses a spanning tree

– Maxflow algorithm determines the maximum flow between a pair
of nodes in a graph, etc.

– Reuse of frequencies in wireless networks (“no“ interference)
uses Vertex coloring

