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Distributed Algorithms

• Distributed algorithms for various graph 

theoretic problems have numerous 

applications in distributed computing system. 

• What is a distributed computing system ?

– The topology of a distributed system is 

represented by a graph where the nodes 

represent processes, and the links represent 

communication channels. 



Topology of a DS is represented by a graph
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A network of processes. The nodes are processes, 
and the edges are communication channels.
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Examples
Server

Client-server model

Server is the coordinator

Peer-to-peer model

No unique coordinator

Clients



Parallel vs Distributed 

• In both parallel and distributed systems, the events are 

partially ordered. 

• The distinction between parallel and distributed is not 

always very clear. always very clear. 

• In parallel systems, the primarily issues are 

• speed-up and increased data handling capability. 

• In distributed systems the primary issues are 

• fault-tolerance, synchronization, scalability, etc.

Parallel Distributed

Grid P2P



Parallel vs Distributed 
(Multiple processors)

• Tightly coupled systems

– Parallel processing 

systems.

CPU CPUCPUCPU

Shared 

Memory

Interconnected Hardware

systems.

• Loosely coupled systems

– Distributed computing                   

systems.
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Examples

Large networks are very commonplace these 

days. Think of the world wide web. 

Other examples are:

- Social Networks

- Sensor networks
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- Sensor networks

- BitTorrent for downloading video / audio

- Skype for making free audio and video 

communication

- Computational grids

- Network of mobile robots



Why distributed systems

• Geographic distribution of processes

• Resource sharing (example: P2P networks, grids)

• Computation speed up ( )• Computation speed up (as in a grid)

• Fault tolerance

• etc.
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Important services

• Internet banking

• Web search

• Net meeting

• Distance education

• Internet auction

• Google earth

• Skype

• Distance education

• Video distribution

• Publish subscribe
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Important issues

• Knowledge is local

• Clocks are not synchronized

• No shared address space

• Topology and routing : everything is dynamic• Topology and routing : everything is dynamic

• Scalability: all solutions do not scale well

• Processes and links fail: Fault tolerance
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Some common subproblems

• Leader election

• Mutual exclusion

• Time synchronization

• Global state collection

• Replica management

• Consensus

• Coloring 

• Self-stabilization
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Models

• We will motive about distributed systems using 

models. There are many dimensions of variability 

in distributed systems. 

• Examples:• Examples:

– types of processors

– inter-process communication mechanisms

– timing assumptions

– failure classes 

– security features, etc



Models

• Models are simple abstractions 
that help to overcome the 
variability -- abstractions that 
preserve the essential features, but 
hide the implementation details 
and simplify writing distributed 

algorithms

and simplify writing distributed 
algorithms for problem solving.

• Optical or radio communication ?

• PC or Mac ?

• Are clocks perfectly synchronized ?

models

Real hardware

Implementation 

of models



Understanding Models

• How models help algorithms

models

Real hardware

Implementation

of models



Modeling Communication

• System topology is a graph    
G = (V, E), where V = set of 
nodes (sequential processes) 
E = set of edges (links or 
channels, bi/unidirectional).channels, bi/unidirectional).

Four types of actions by a 
process:

– internal action

– input action

– communication action

– output action



Example: A Message Passing Model

A Reliable FIFO Channel

• Axiom 1. Message m sent ⇔
message m received 

• Axiom 2. Message propagation 

P

• Axiom 2. Message propagation 
delay is arbitrary but finite.

• Axiom 3. m1 sent before m2 ⇔

m1 received before m2.

P

Q

Q

time

Send(m1) Send(m2)

receive(m1) receive(m2)



Example: Shared memory model

• Address spaces of processes overlap

M1 M2

• Concurrent operations on a shared variable are serialized

1 3
2

4
Processes



Variations of shared memory models

• State reading model 

– Each process can read the 

states of its neighbors

0

3
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• Link register model 

– Each process can read from and 

write to adjacent registers. The 

entire local state is not shared.
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Modeling wireless networks
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• Communication via broadcast

• Limited range

• Dynamic topology

• Collision of broadcasts 

(handled by CSMA/CA)
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(a)

(b)

(handled by CSMA/CA)

RTS RTS

CTS

Request To Send

Request To SendClear To Send



Synchrony vs. Asynchrony

Send & receive can be 
blocking or non-blocking

Postal communication is 
asynchronous 

Synchronous 

clocks

Physical clocks are 

synchronized

Synchronous 

processes

Lock-step synchrony

Synchronous Bounded delay

Telephone communication 
is synchronous

Synchronous 
communication or not?  

(1) Remote Procedure Call,

(2) Email 

Synchronous 

channels

Bounded delay

Synchronous 

message-order

First-in first-out 

channels

Synchronous 

communication

Communication via 

handshaking



Weak vs. Strong Models

• One object (or operation) of a strong 
model = More than one simpler 
objects (or simpler operations) of a 
weaker model. 

Examples

High level language is stronger
than assembly language.

• Often, weaker models are 
synonymous with fewer restrictions.

• One can add layers (additional 

restrictions) to create a stronger 

model from weaker one.

Asynchronous is weaker than
synchronous (communication).

Bounded delay is stronger than
unbounded delay (channel)



Model transformation

Stronger models

- simplify reasoning, but 

- needs extra work to 

implement 

“Can model X be implemented 

using model Y?”””” is an interesting 

question in computer science.

Weaker models

- are easier to implement. 

- Have a closer relationship 

with the real world

Sample exercises

1. Non-FIFO to FIFO channel

2. Message passing to shared memory

3. Non-atomic broadcast to  atomic 

broadcast



Non-FIFO to FIFO channel

P Q

m1m4m3m2

FIFO = First-In-First-Out

Sends out 

m1, m2, m3, m4, …



Non-FIFO to FIFO channel

P Q

m1m4m3m2

FIFO = First-In-First-Out

buffer

1234567Sends out 

m1, m2, m3, m4, …



Non-FIFO to FIFO channel
{Sender process P} {Receiver process Q}

var i : integer {initially 0} var k : integer {initially 0}

buffer: buffer[0..∞] of msg

{initially ∀k: buffer [k] = empty

repeat repeat {STORE}

send m[i],i to Q; receive m[i],i from P;

i := i+1 store m[i] into buffer[i];i := i+1 store m[i] into buffer[i];

forever {DELIVER}

while buffer[k] ≠ empty do
begin

deliver content of buffer [k];

buffer [k] := empty; k := k+1;

end

foreverNeeds unbounded buffer &

unbounded sequence no 

THIS IS BAD



Observations

• Now solve the same problem on a model where 
a) The propagation delay has a known upper bound of T.

b) The messages are sent out @ r per unit time.

c) The messages are received at a rate faster than r.

The buffer requirement drops to r.T. 

(Lesson) Stronger model helps.

Question. Can we solve the problem using bounded buffer space 

if the propagation delay is arbitrarily large?



Example

1 second window

First message

sender

Last message

receiver



Implementing Shared memory using 

Message passing 
{Read X by process i}: read x[i]

{Write X:= v by process i}

- x[i] := v;

- Atomically broadcast v to

every other process j (j ≠ i);

X

memory

x[0]

x[1]

x[2]

- After receiving broadcast,

process j (j ≠ i) sets x[j] to v.

Understand the significance of atomic

operations. It is not trivial, but is very

important in distributed systems.

Atomic = all or nothing

0 1 2 3

processes

x[3]

(a) (b)

Implementation Atomically 

broadcast is far from trivial



Non-atomic to atomic broadcast

Atomic broadcast = either everybody or nobody receives

{process i is the sender}

for j = 1 to N-1 (j ≠ i) send message m to neighbor [j] 
(Easy!)(Easy!)

Now include crash failure as a part of our model. 

What if the sender crashes at the middle ? 

How to implement atomic broadcast in presence of crash?



Complexity Measures



Common measures

Space complexity

How much space is needed per process to run an algorithm? (measured 
in terms of N, the size of the network)

Time complexity

What is the max. time (number of steps) needed to complete the What is the max. time (number of steps) needed to complete the 
execution of the algorithm?

Message complexity

How many message are needed to complete the execution of the 
algorithm?



An example

Consider broadcasting in an n-cube (here n=3)

N = total number of processes = 2n = 8

Each process j > 0 has a

source

variable x[j], whose

initial value is arbitrary



Broadcasting using messages

{Process 0} m.value := x[0];

send m to all neighbors

{Process i > 0}

repeat

receive m {m contains the value};

if m is received for the first timeif m is received for the first time

then x[i] := m.value;

send x[i] to each neighbor j > i

else discard m

end if

Forever

What is the

(1) Message & time complexities

(2) space complexity per process?

m

m

m

1/2 (N log2N) & log2N

log2N 



Broadcasting using shared memory

{Process 0} x[0] := v

{Process i > 0}

repeat

if ∃ a neighbor j < i : x[i] ≠ x[j]

then x[i] := x[j] (PULL DATA)then x[i] := x[j] (PULL DATA)

{this is a step}

else skip

end if

forever

What is the time complexity?

(i.e. how many steps are needed?)
Arbitrarily large!



Broadcasting using shared memory

Now, use “large atomicity”, where

in one step, a process j reads the states

of ALL neighbors with smaller id, and

updates x[j] only when these are equal,

but different from x[j].but different from x[j].

What is the time complexity ?

How many steps are needed ?



Rounds are truly defined for synchronous

systems. An asynchronous round consists

of a number of steps where every process

(including the slowest one) takes at least

Time complexity in rounds

one step.

How many rounds will you need to complete

the broadcast using the large atomicity

model ?

An easier concept is that of synchronous processes

executing their steps in lock-step synchrony



Graph Algorithms vs

Distributed Algorithms



Graph Algorithms

• Why graph algorithms? 

• Many problems in DS can be modeled as graph problems.    

Note that

– The topology of a distributed system is a graph

– Routing table computation uses the shortest path algorithm

– Efficient broadcasting uses a spanning tree– Efficient broadcasting uses a spanning tree

– Maxflow algorithm determines the maximum flow between a pair 
of nodes in a graph, etc.

– Reuse of frequencies in wireless networks (“no“ interference)
uses Vertex coloring


